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Abstract

On-Line Analytical Processing (OLAP) based on a dimensional view of data is being used in-
creasingly in traditional business applications as well as in applications such as health care for
the purpose of analyzing very large amounts of data. Pre-aggregation, the prior materializa-
tion of aggregate queries for later use, is an essential technique for ensuring adequate response
time during data analysis. Full pre-aggregation, where all combinations of aggregates are ma-
terialized, is infeasible. Instead, modern OLAP systems adopt the practical pre-aggregation
approach of materializing only select combinations of aggregates and then re-use these for ef-
ficiently computing other aggregates. However, this re-use of aggregates is contingent on the
dimension hierarchies and the relationships between facts and dimensions satisfying stringent
constraints. This severely limits the scope of the practical pre-aggregation approach. This pa-
per significantly extends the scope of practical pre-aggregation to cover a much wider range
of realistic situations. Specifically, algorithms are given that transform “irregular” dimension
hierarchies and fact-dimension relationships, which often occur in real-world OLAP applica-
tions, into well-behaved structures that, when used by existing OLAP systems, enable practical
pre-aggregation. The algorithms have low computational complexity and may be applied incre-
mentally to reduce the cost of updating OLAP structures.
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1 Introduction

On-Line Analytical Processing (OLAP) systems, which aim to ease the process of extracting
useful information from large amounts of detailed transactional data, have gained widespread
acceptance in traditional business applications as well as in new applications such as health care.
These systems generally offer a dimensional view of data, in which measured values, termed
facts, are characterized by descriptive values, drawn from a number of dimensions; and the
values of a dimension are typically organized in a containment-type hierarchy. A prototypical
query applies an aggregate function, such as average, to the facts characterized by specific
values from the dimensions.

Fast response times are required from these systems, even for queries that aggregate large
amounts of data. The perhaps most central technique used for meeting this requirement is
termed pre-aggregation, where the results of aggregate queries are pre-computed and stored,
i.e., materialized, for later use during query processing. Pre-aggregation has attracted substan-
tial attention in the research community, where it has been investigated how to optimally use
pre-aggregated data for query optimization [7, 3] and how to maintain the pre-aggregated data
when base data is updated [19, 23]. Further, the latest versions of commercial RDBMS products
offer query optimization based on pre-computed aggregates and automatic maintenance of the
stored aggregates when base data is updated [29].

The fastest response times may be achieved when materializing aggregate results corre-
sponding to all combinations of dimension values across all dimensions, termed full (or eager)
pre-aggregation. However, the required storage space grows rapidly, to quickly become pro-
hibitive, as the complexity of the application increases. This phenomenon is called data ex-
plosion [4, 26, 21] and occurs because the number of possible aggregation combinations grows
rapidly when the number of dimensions increase, while the sparseness of the multidimensional
space decreases in higher dimension levels, meaning that aggregates at higher levels take up
nearly as much space as lower-level aggregates. In some commercial applications, full pre-
aggregation takes up as much as ����� times the space of the raw data [21]. Another problem
with full pre-aggregation is that it takes too long to update the materialized aggregates when
base data changes.

With the goal of avoiding data explosion, research has focused on how to select the best
subset of aggregation levels given space constraints [11, 9, 31, 1, 27, 25] or maintenance time
constraints [10], or the best combination of aggregate data and indices [8]. This approach is
commonly referred to as practical (or partial or semi-eager [5, 11, 28]) pre-aggregation. Com-
mercial OLAP systems now also exist that employ practical pre-aggregation, e.g., Microsoft
Decision Support Services (Plato) [18] and Informix MetaCube [13].

The premise underlying the applicability of practical pre-aggregation is that lower-level ag-
gregates can be re-used to compute higher-level aggregates, known as summarizability [16].
Summarizability occurs when the mappings in the dimension hierarchies are onto (all paths in
the hierarchy have equal lengths), covering (only immediate parent and child values can be re-
lated), and strict (each child in a hierarchy has only one parent); and when also the relationships
between facts and dimensions are many-to-one and facts are always mapped to the lowest levels
in the dimensions [16]. However, the data encountered in many real-world applications fail to
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comply with this rigid regime. This motivates the search for techniques that allow practical
pre-aggregation to be used for a wider range of applications, the focus of this paper.

Specifically, this papers leverages research such as that cited above. It does so by showing
how to transform dimension hierarchies to obtain summarizability, and by showing how to
integrate the transformed hierarchies into current systems, transparently to the user, so that
standard OLAP technology is re-used. Specifically, algorithms are presented that automatically
transform dimension hierarchies to achieve summarizability for hierarchies that are non-onto,
non-covering, and non-strict. The algorithms have low computational complexity, and are thus
applicable to even very large databases. It is also described how to use the algorithms to contend
with non-summarizable relationships between facts and dimensions, and it is shown how the
algorithms may be modified to accommodate incremental computation, thus minimizing the
maintenance cost associated with base-data updates.

To our knowledge, this work is the first to present algorithms to automatically achieve sum-
marizability for non-covering and non-onto hierarchies. The research reported here is also the
first to demonstrate techniques and algorithms for achieving summarizability in non-strict hi-
erarchies. The integration of the techniques into current systems, transparently to the user, we
believe is a novel feature. The only past research on the topic has been on how to manually, and
not transparently to the user, achieve summarizability for non-covering hierarchies [24].

The next section presents a real-world clinical case study that exemplifies the non-summari-
zable properties of real-world applications. Section 3 proceeds to define the aspects of a multi-
dimensional data model necessary for describing the new techniques, and defines also important
properties related to summarizability. Sections 4 and 5 present algorithms that transform dimen-
sion hierarchies to achieve summarizability, then apply the algorithms to fix non-summarizable
relationships between facts and dimensions. Section 6 demonstrates how the techniques may be
integrated into current systems, transparently to the user. Section 7 summarizes and points to
topics for future research. Appendix A describes how to modify the algorithms to accommodate
incremental computation.

2 Motivation—A Case Study

This section presents a case study that illustrates the properties of real-world dimension hier-
archies. The case study concerns patients in a hospital, their associated diagnoses, and their
places of residence. The data analysis goal is to investigate whether some diagnoses occur
more often in some areas than in others, in which case environmental or lifestyle factors might
be contributing to the disease pattern. An ER diagram illustrating the underlying data is seen in
Figure 1.

The most important entities are the patients, for which we record the name. We always
want to count the number of patients, grouped by some properties of the patients. Thus, in
multidimensional terms, the patients are the facts, and the other, describing, entities constitute
the dimensions.

Each patient has a number of diagnoses, leading to a many-to-many relationship between
facts and the diagnosis dimension. When registering diagnoses of patients, physicians use dif-
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Figure 1: ER Schema of Case Study

ferent levels of granularity, ranging from very precise diagnoses, e.g., “Insulin dependent di-
abetes during pregnancy,” to more imprecise diagnoses, e.g., “Diabetes,” which cover wider
ranges of patient conditions. To model this, the relationship from patient to diagnoses is to
the supertype “Diagnosis,” which then has three subtypes, corresponding to different levels of
granularity, the low-level diagnosis, the diagnosis family, and the diagnosis group. Examples
of these are “Insulin dependent diabetes during pregnancy,” “Insulin dependent diabetes,” and
“Diabetes,” respectively. The higher-level diagnoses are both (imprecise) diagnoses in their
own right, but also serve as groups of lower-level diagnoses.

Each diagnosis has an alphanumeric code and a descriptive text, which are specified by some
standard, here the World Health Organization’s International Classification of Diseases (ICD-
10) [30], or by the physicians themselves. Indeed, two hierarchies are captured: the standard
hierarchy specified by the WHO, and the user-defined hierarchy, which is used for grouping
diagnoses on an ad-hoc basis in other ways than given by the standard. The Type attribute on
the relationships determines whether the relation between two entities is part of the standard or
the user-defined hierarchy.

The hierarchy groups low-level diagnoses into diagnosis families, each of which consists of
2–20 related diagnoses. For example, the diagnosis “Insulin dependent diabetes during preg-
nancy1” is part of the family “Diabetes during pregnancy.” In the WHO hierarchy, a low-level

1The reason for having a separate pregnancy related diagnosis is that diabetes must be monitored and controlled
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diagnosis belongs to exactly one diagnosis family, whereas the user-defined hierarchy does
not have this restriction. Thus, a low-level diagnosis can belong to several diagnosis families,
e.g., the “Insulin dependent diabetes during pregnancy” diagnosis belongs to both the “Dia-
betes during pregnancy” and the “Insulin dependent diabetes” family. Next, diagnosis families
are grouped into diagnosis groups, consisting of 2–10 families, and one family may be part
of several groups. For example, the family “Diabetes during pregnancy” may the part of the
“Diabetes” and “Other pregnancy related diseases” groups.

In the WHO hierarchy, a family belongs to exactly one group. In the WHO hierarchy, a
lower-level value belongs to exactly one higher-level value, making it strict and covering. In
the user-defined hierarchy, a lower-level value may belong to zero or more higher-level values,
making it non-strict and non-covering. Properties of the hierarchies will be discussed in more
detail in Section 3.2.

We also record the addresses of the patients. If the address is located in a city, we record
the city; otherwise, if the address is in a rural area, we record the county in which the address is
located. A city is located in exactly one county. As not all addresses are in cities, we cannot find
all addresses in a county by going through the “City located in” relationship. Thus, the mapping
from addresses to cities is non-covering w.r.t. addresses. For cities and counties, we just record
the name. Not all counties have cities in them, so the mapping from cities to counties is into
rather than onto.

In order to exemplify the data, we assume a standard mapping of the ER diagram to rela-
tional tables, i.e., one table per entity and relationship type. We also assume the use of surro-
gate keys, named ID, with globally unique values. The three subtypes of the Diagnosis type
are mapped to a common Diagnosis table, and because of this, the “belongs to” and “grouping”
relationships are mapped to a common “Grouping” table. The resulting tables with sample data
are shown in Table 1 and will be used in examples throughout the paper.

If we apply pre-aggregation to the data from the case study, several problems occur. For
example, if the counts of patients by City are pre-computed and we use these for computing the
numbers of patients by county, an incorrect result will occur. In the data, the addresses “123
Rural Road” and “1 Sandy Dunes” (one of them is the address of a patient) are not in any city,
making the mapping from City to County not covering w.r.t. addresses.

Next, if the counts of patients by Low-Level Diagnosis are pre-computed and we use these
for computing the total count of patients, an incorrect result again ensues. First, patients only
with lung cancer are not counted, as lung cancer is not present at the level of Low-Level Diagno-
sis; the mapping from Low-Level Diagnosis to Diagnosis Family is into. Second, patients such
as “Jim Doe” only have higher-level diagnoses and will no be counted; the fact-to-dimension
mapping has varying granularity. Third, patients such as “Jane Doe” have several diagnoses
and will be counted several times; , the relationship between facts and dimensions is many-to-
many. Fourth, Low-Level diagnoses such as “Insulin dependent diabetes during pregnancy” are
part of several diagnosis families, which may also lead to “double” counting when computing
higher-level counts; the dimension hierarchy is non-strict.

These problems yield “non-summarizable” dimension hierarchies that severely limit the

particularly intensely during a pregnancy to assure good health of both mother and child.
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ID Name
1 John Doe
2 Jane Doe
3 Jim Doe

Patient

PatientID AddressID
1 50
2 51
3 52

LivesAt

ID Address
50 21 Central Street
51 34 Main Street
52 123 Rural Road
53 1 Sandy Dunes

Address

PatientID DiagnosisID Type
1 9 Primary
2 5 Secondary
2 9 Primary
3 11 Primary

Has

ParentID ChildID Type
4 5 WHO
4 6 WHO
9 5 User-defined

10 6 User-defined
11 9 WHO
11 10 WHO
12 4 WHO
13 14 WHO

Grouping

ID Code Text Type
4 O24 Diabetes during pregnancy Family
5 O24.0 Insulin dependent diabetes during pregnancy Low-Level
6 O24.1 Non insulin dependent diabetes during pregnancy Low-Level
9 E10 Insulin dependent diabetes Family
10 E11 Non insulin dependent diabetes Family
11 E1 Diabetes Group
12 O2 Other pregnancy related diseases Group
13 A1 Cancer Group
14 A11 Lung cancer Family

Diagnosis

ID Name
20 Sydney
21 Melbourne

City

AddressID CityID
50 20
51 21

LocatedInCity

ID Name
30 Sydney
31 Melbourne
32 Outback

County

ID Name
52 31
53 32
LocatedInRuralArea

CityID CountyID
20 30
21 31
CityLocatedIn

Table 1: Tables for the Case Study
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applicability of practical pre-aggregation, leaving only full pre-aggregation, requirering huge
amounts of storage, or no pre-aggregation, resulting in long response time for queries.

The properties described above are found in many other real-world applications. Many-to-
many relationships between facts and dimensions occur between bank customers and accounts,
between companies and Standard Industry Classifications (SICs), and between students and de-
partments [15, 16]. Non-strict dimension hierarchies occur from cities to states in a Geography
dimension [24] and from weeks to months in a Time dimension. In addition, hierarchies where
the change over time is captured are generally non-strict. The mapping from holidays to weeks
as well as organization hierarchies of varying depth [12] offer examples of “into” mappings.
Non-covering relationships exist for days-holidays-weeks and for counties-cities-states, as well
as in organization hierarchies [12].

Even though many real-world cases possess the properties described above, current tech-
niques for practical pre-aggregation require that facts are in a many-to-one relationships to di-
mensions and that all hierarchies are strict, onto, and covering. Thus, current techniques cannot
be applied when the hierarchies has these properties.

3 Method Context

This section defines the aspects of a multidimensional data model that are necessary to define the
techniques that enable practical pre-aggregation in applications as the one just described. The
full model is described elsewhere [22]. Next, the data model context is exploited for defining
properties of hierarchies relevant to the techniques.

The particular data model has been chosen over other multidimensional data models because
it quite naturally captures the data described in the case study and because it includes explicit
concepts of dimensions and dimension hierarchies, which is very important for clearly present-
ing the techniques. However, the techniques are also applicable to other multidimensional or
statistical data models, as will be discussed in Section 6.

3.1 A Concrete Data Model Context

For each part of the model, we define the intension and the extension, and we give an illustrating
example.

An n-dimensional fact schema is a two-tuple ��� 	�
����� , where 
 is a fact type and
������������������� �!�"��#%$ is its corresponding dimension types.

Example 1 In the case study from Section 2, Patient is the fact type, and Diagnosis, Residence,
and Name are the dimension types. The intuition is that everything that characterizes the fact
type is considered to be dimensional.

A dimension type � is a four-tuple 	'&(� )+*,�.-/*(�.01*�� , where &2�3� &�4��657�8��� �"�"�.9:$ are the
category types of � , )+* is a partial order on the &;4 ’s, with -/*=<>& and 0/*?<@& being the
top and bottom element of the ordering, respectively. Thus, the category types form a lattice.
The intuition is that one category type is “greater than” another category type if members of the
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former’s extension logically contain members of the latter’s extension, i.e., they have a larger
value size. The top element of the ordering corresponds to the largest possible value size, that
is, there is only one value in it’s extension, logically containing all other values.

We say that &;4 is a category type of � , written &A4B<C� , if &�4B<& .

Example 2 Low-level diagnoses are contained in diagnosis families, which are contained in
diagnosis groups. Thus, the Diagnosis dimension type has the following order on its category
types: 0EDGFIHKJ6L.M6N'FIN = Low-level Diagnosis O Diagnosis Family O Diagnosis Group OP-QDGFIHRJSL.M6N'FTN .
Other examples of category types are Address, City, and County. Figure 2, to be discussed in
detail later, illustrates the dimension types of the case study.

A category U,4 of type &;4 is a set of dimension values V . A dimension W of type � �
	S� &�4X$A� )Y*(�.-/*(�.0/*Z� is a two-tuple W[�?	RU1� )B� , where U\����U,4 $ is a set of categories U,4 such
that ]_^.`ba�	RU(4c�Y��&;4 and ) is a partial order on d%4cU(4 , the union of all dimension values in the
individual categories. We assume a function egf�a�h2i%Ukjl �;m that gives the set of immediate
predecessors of a category U,4 . Similarly, we a assume a function nQaporq+iAUsjl � m that gives the
set of immediate descendants of a category Ut4 . For both etf�a�h and nQaporq , we “count” from the
category -1* (of type -1* ), so that category -u* is the ultimate predecessor and category 0E* (of
type 01* ) is the ultimate descendant.

The definition of the partial order is: given two values V;vc�pV w then V�v/)sV w if V�v is logically
contained in Vrw . We say that U(4 is a category of W , written Ux4y<CW , if U,4y<CU . For a dimension
value V , we say that V is a dimensional value of W , written V1<zW , if Vu<zd�4{U(4 .

The category of type 0u* in dimension of type � contains the values with the smallest value
size. The category with the largest value size, with type -E* , contains exactly one value, denoted
- . For all values V of the dimension W , VE)|- . Value - is similar to the ALL construct of Gray
et al. [6]. When the context is clear, we refer to a category of type -}* as a - category, not to
be confused with the - dimension value.

Example 3 In our Diagnosis dimension we have the following categories, named by their type.
The numbers in parentheses are the ID values from the Diagnosis table in Table 1. Low-level
Diagnosis = � “Insulin dependent diabetes during pregnancy” (5), ”Non insulin dependent dia-
betes during pregnancy” (6) $ , Diagnosis Family = � “Diabetes during pregnancy” (4), “Insulin
dependent diabetes” (9), ”Non insulin dependent diabetes” (10), “Lung cancer” (14) $ , Diag-
nosis Group = � “Diabetes” (11), “Other pregnancy related diseases” (12), “Cancer” (13) $ , and
-u~����S�S� �6������� ��-Q$ . We have that egf�a�h�	 Low-level Diagnosis �� � Diagnosis Family $ . The
partial order ) is obtained by combining WHO and user-defined hierarchies, as given by the
Grouping table in Table 1. Additionally, the top value - is greater than, i.e., logically contains,
all the other diagnosis values.

Let � be a set of facts, and W���	RU3����U,4 $A� )+� a dimension. A fact-dimension relation
between � and W is a set �k����	R�:�pVX�p$ , where �|<|� and V�<>d%4cU(4 . Thus � links facts to
dimension values. We say that fact � is characterized by dimension value V , written ��� V , if� V�vB<�W�	�	K�G�pV�v��+<��P�CV�v+)\VX� . We require that ����<���	 � V�<�d�4cU(4B	�	K�:��VX�+<��1��� ; thus, all
fact maps to at least one dimension value in every dimension. The - value is used to represent
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an unknown or missing value, as - logically contains all dimension values, and so a fact � is
mapped to - if it cannot be characterized within the particular dimension.

Example 4 The fact-dimension relation � links patient facts to diagnosis dimension values as
given by the Has table from the case study, so that �@��� (“John Doe” (1), “Insulin dependent di-
abetes” (9)), (“Jane Doe” (2), “Insulin dependent diabetes during pregnancy” (5)), (“Jane Doe”
(2), “Insulin dependent diabetes” (9)), (“Jim Doe” (3), “Diabetes” (11)) $ . Note that facts may
be related to values in higher-level categories. We do not require that V belongs to 0�DGFIHRJSL.M6N'FTN .
For example, the fact “John Doe” (1) is related to the diagnosis “Insulin dependent diabetes”
(5), which belongs to the Diagnosis Family category. This feature will be used later to explicitly
capture the different granularities in the data. If no diagnosis was known for patient “John Doe”
(1), we would have added the pair (“John Doe” (1), - ) to � .

A multidimensional object (MO) is a four-tuple � ��	��y�p���pW �p�1� , where ����	¡
 ���¢�
�����K$�� is the fact schema, �\�����%$ is a set of facts � where ]£^p`baA	R���(�|
 , W¤����W������%�¥��� �!�"��#%$
is a set of dimensions where ]_^.`ba�	¦W��¦�z� ��� , and � � ���y������ ���§�!�"��#�$ is a set of fact-
dimension relations, such that �¨��	�	R�:�pVX�©<C�+��ª ��<C�«� � U(4B<�W¬�6	RVu<CU(4c��� .

Low-level Diagnosis =⊥

Diagnosis Family

Diagnosis Group

⊥

Diagnosis
Dimension

Residence
Dimension

Address = ⊥

City

County

⊥

Patient

Name =⊥
⊥

Name
Dimension

Name

NameResidence

Residence

Diagnosis

Diagnosis

Figure 2: Schema of the Case Study

Example 5 For the case study, we get a three-dimensional MO � � 	��y�p���pW ���1� , where
�2�=	 Patient, � Diagnosis, Name, Residence $�� and �s�s� “John Doe” (1), “Jane Doe” (2), “Jim
Doe” (3) $ . The definition of the diagnosis dimension and its corresponding fact-dimension re-
lation was given in the previous examples. The Residence dimension has the categories Address
( �?0uA®¦N'FI¯°®¦L.±'® ), City, County, and -EA®RN²F³¯S®RL.±²® . The values of the categories are given by the cor-
responding tables in Table 1. The partial order is given by the relationship tables. Additionally,
the only value in the -EA®RN²F³¯S®RL.±²® category is - , which logically contains all the other values in
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the Residence dimension. The Name dimension is simple, i.e., it just has a Name category
( ��0E´bHSµ�® ) and a - category. We will refer to this MO as the “Patient” MO. A graphical il-
lustration of the schema of the “Patient” MO is seen in Figure 2. Because some addresses map
directly to counties, County is an immediate predecessor of Address.

The facts in an MO are objects with value-independent identity. We can test facts for equal-
ity, but do not assume an ordering on the facts. The combination of dimensions values that
characterize the facts of a fact set is not a “key” for the fact set. Thus, several facts may be
characterized by the same combination of dimension values. But, the facts of an MO is a set,
so an MO does not have duplicate facts. The model formally defines quite general concepts
of dimensions and dimension hierarchies, which is ideal for the presentation of our techniques.
The presented techniques are not limited by the choice of data model.

3.2 Hierarchy Properties

In this section important properties of MOs that relate to the use of pre-computed aggregates
are defined. The properties will be used in the following sections to state exactly what problems
the proposed algorithms solve. The first important concept is summarizability, which intuitively
means that higher-level aggregates may be obtained directly from lower-level aggregates.

Definition 1 Given a type ¶ , a set ·3� ��·b4��65P� ��� �"�!�.9G$ , where ·£4�<[�X¸ , and a function¹ i¨� ¸ jl ¶ , we say that ¹ is summarizable for · if ¹ 	6�K� ¹ 	K·ZvS�c� �"�"� ¹ 	K·�º{�.$R$��y� ¹ 	R·%v%d��!��dz·�ºr� .
The argument on the left-hand side of the equation is a multiset, i.e., the same value may occur
multiple times.

Summarizability is important as it is a condition for the flexible use of pre-computed aggre-
gates. Without summarizability, lower-level results generally cannot be directly combined into
higher-level results. This means that we cannot choose to pre-compute only a relevant selection
of the possible aggregates and then use these to (efficiently) compute higher-level aggregates
on-the-fly. Instead, we have to pre-compute the all the aggregate results of queries that we need
fast answers to, while other aggregates must be computed from the base data. Space and time
constraints can be prohibitive for pre-computing all results, while computing aggregates from
base data is often inefficient.

It has been shown that summarizability is equivalent to the aggregate function ( ¹ ) being
distributive, all paths being strict, and the mappings between dimension values in the hierarchies
being covering and onto [16]. These concepts are formally defined below. The definitions
assume a dimension W[�?	¦Uu�§)B� and an MO � �=	¡�+���»��W �p�1� .
Definition 2 Given two categories, UBv.�pU©w such that U�w/<½¼u¾�Vr¿:	RUyvS� , we say that the mapping
from Uyv to U©w is onto iff ��Vrw1<½U©wX	 � V�vy<�Uyv+	¦V�vY)\V wc��� . Otherwise, it is into. If all mappings
in a dimension are onto, we say that the dimension hierarchy is onto.

Mappings that are into typically occur when the dimension hierarchy has varying height. In
the case study, there is no low-level cancer diagnosis, meaning that some parts of the hierarchy

10



have height � , while most have height À . It is thus not possible to use aggregates at the Low-
level Diagnosis level for computing aggregates at the two higher levels. Mappings that are into
also occur often in organization hierarchies.

Definition 3 Given three categories, UBv , U©w , and U�Á such that ]£^p`ba�	RU+v��ÂO ]_^.`ba;	RU©wp�>O
]£^p`baA	¦U©Á.� , we say that the mapping from U»w to U�Á is covering with respect to U+v iff ��V�v <
Uyv,	²��V Áu<ÃU©Á©	RV�vY)ÄV ÁYª � V w/<½U©w�	¦V�v»)ÄV wÅ��V w/)ÄV Á.����� . Otherwise, it is non-covering with
respect to U+v . If all mappings in a dimension are covering w.r.t. any category, we say that the
dimension hierarchy is covering.

Non-covering mappings occur when some of the links between dimension values skip one or
more levels and map directly to a value located higher up in the hierarchy. In the case study, this
happens for the “1 Sandy Dunes” address, which maps directly to “Outback County” (there are
no cities in Outback County). Thus, we cannot use aggregates at the City level for computing
aggregates at the County level.

Definition 4 Given an MO � �?	��y�p���pW ���1� , and two categories U/v and U©w that belong to the
same dimension W��Y<ÆW such that ]£^p`ba;	RU+v°�¬OÇ]£^p`ba�	RU©wc� , we say that the mapping from U+v
to U©w is covering with respect to � , the set of facts, iff ����<��s	²��V�wE<�U©w�	R���Ä�%V w+ª � V�v+<
Uyv(	R���Ä�:V�v��V�v©)Y�¨V wc����� .

This case is similar to the one above, but now it is the mappings between facts and dimension
values that may skip one or more levels and map facts directly to dimension values in categories
above the bottom level. In the case study, the patients can map to diagnoses anywhere in the Di-
agnosis dimension, not just to Low-level Diagnoses. This means that we cannot use aggregates
at the Low-level Diagnosis Level for computing aggregates higher up in the hierarchy.

Definition 5 Given two categories, U+v and U©w such that U©w1<�etf�a�h�	RUyv�� , we say that the map-
ping from U+v to U©w is strict iff ��V�vÈ<sUyv»	'��V wr�pV Á<¥U©w+	RV�v�)�V w©��V�vÈ)�V Á�ª V wÉ�ÊV Ác��� .
Otherwise, it is non-strict. The hierarchy in dimension W is strict if all mappings in it are
strict; otherwise, it is non-strict. Given an MO � � 	��y�p���pW �p�1� and a category Ut4 in
some dimension W¬�}<sW , we say that there is a strict path from the set of facts � to Ut4 iff
����<���	K�Ë�Ä��V�v��C���Ä��V w(��V�vy<�U(4,��V w1<�U(4+ª V�v��sV w ). (Note that the paths to the -u*
categories are always strict.)

Non-strict hierarchies occur when a dimension value has multiple parents. This occurs in the
Diagnosis dimension in the case study where the “Insulin dependent diabetes during pregnancy”
low-level diagnosis is part of both the “Insulin Dependent Diabetes” and the “Diabetes during
pregnancy” diagnosis families, which in turn both are part of the “Diabetes” diagnosis group.
This means that we cannot use aggregates at the Diagnosis Family level to compute aggregates
at the Diagnosis Group level, since data for “Insulin dependent diabetes during pregnancy”
would then be counted twice.

11



Definition 6 If the dimension hierarchy for a dimension W is onto, covering, and strict, we say
that W is normalized. Otherwise, it is un-normalized. For an MO � � 	��y�pW ���»���1� , if all
dimensions W¬�1<\W are normalized and ���+�E<Ä�=	�	R�:�pVX�Ë<Ä�y�+ª Vz<s01~ ) (, i.e., all facts
map to dimension values in the bottom category), we say that � is normalized. Otherwise, it is
un-normalized.

For normalized hierarchies and MOs, all mappings are summarizable, meaning that we
can pre-aggregate values at any combination of dimension levels and safely re-use the pre-
aggregated values to compute higher-level aggregate results. Thus, we want to normalize the
dimension hierarchies and MOs for which we want to apply practical pre-aggregation.

We proceed to describe how the normalization of the dimension hierarchies and MOs used
for aggregation is achieved. We first show how to perform transformations on dimension hi-
erarchies, then later describe how the same techniques may be applied to eliminate the non-
summarizable properties of fact-dimension relations.

4 Dimension Transformation Techniques

This section describes how dimensions can be transformed to achieve summarizability. Trans-
forming dimensions on their own, separately from the facts, results in well-behaved dimensions
that can be applied in a number of different systems or sold to third-party users. The transforma-
tion of the dimension hierarchies is a three-step operation. First, all mappings are transformed to
be covering, by introducing extra “intermediate” values. Second, all mappings are transformed
to be onto, by introducing “placeholder” values at lower levels for values without any children.
Third, mappings are made strict, by “fusing” values together. The three steps are treated in sep-
arate sections. None of the algorithms introduce any non-summarizable properties, so applying
each once is sufficient.

In general, the algorithms take as input a set of tables � m�Ì6Í m;Î that specifies the mapping
from dimension values in category UBv to values in category U�w . The input needs not contain all
pairs of ancestors and descendants—only direct parent-child relationships are required. If there
are non-covering mappings in the hierarchy, we have categories U1�p¼��pÏ such that ��¼��pÏÃ$CÐ
egf�a�h�	¦U}� and ]_^.`ba�	¦¼}�1O¢]_^.`ba;	RÏ�� . In this case, the input must also contain �1Ñ Í Ò tables that
map ¼ values to Ï values.

4.1 Non-Covering Hierarchies

The first algorithm renders all mappings in a dimension hierarchy covering w.r.t. any category.
When a dimension value is mapped directly to another value in a category higher than the one
immediately above it in the hierarchy, a new intermediate value is inserted into the category
immediately above, and the two original dimension values are linked to this new value, rather
than to each other.

Example 6 In the hierarchy for the Residence dimension, two links go from Address directly
to County. The address “123 Rural Road” (52) is in “Melbourne County” (31), but not in a
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city, and the address “1 Sandy Dunes” (53) is in “Outback County” (32), which does not have
any cities at all. The algorithm inserts two new dimension values in the City category, C31
and C32, which represent Melbourne and Outback county, respectively, and links them to their
respective counties. The addresses “123 Rural Road” and “1 Sandy Dunes” are then linked to
C31 and C32, respectively. This occurs in the first call of procedure MakeCovering (on the
Address category; the procedure is given below). When MakeCovering is called recursively on
the City, County, and - categories, nothing happens, as all mappings are already covering. The
transformation is illustrated graphically in Figure 3. The dotted lines show the “problematic”
links, and the bold-face values and thick lines show the new dimension values and links.

⊥

30 3231

20 21

50 51 52 53

⊥

30 3231

20 21

50 51 52 53

C31 C32

Figure 3: Transformations by the MakeCovering Algorithm

In the algorithm, U is a child category, ¼ is a parent category, Ï is a “higher” category, Ó
are the non-covering links from U to Ï , and Ô are the “higher” dimension values in Ó . The Õ
operator denotes natural join. The algorithm works as follows. Given the argument category U
(initially the bottom category) in line (1), the algorithms goes through all U ’s parent categories
¼ (2). For each parent category ¼ , it looks for predecessor categories Ï of U that are “higher”
in the hierarchy than ¼ (4). If such an Ï exist, there might be links in the mapping from U to
Ï that are not available by going through ¼ . Line (6) finds these “non-covered” links, Ó , in the
mapping from U to Ï by “subtracting” the links that are available by going through ¼ from all
the links in the mapping from U to Ï . Line (7) uses Ó to find the dimension values Ô in Ï that
participate in the “non-covered” mappings. For each value in Ô , line 8 inserts a corresponding
marked value into ¼ ; these marked values represent the Ô values in ¼ . The marked values in
¼ are then linked to the original values in Ï (9) and C (10). Line (12) contains a recursive call
to the algorithm ¼ , thus fixing mappings higher up in the hierarchy. The algorithm terminates
when it reaches the - category, which has no predecessors.

All steps in the algorithm are expressed using standard relational algebra operators. The gen-
eral worst-case complexity of join is ÖÈ	�# w � , where # is the size of the input. However, because
the input to the algorithm are hierarchy definitions, the complexity of the join in the algorithm

13



will only be Ö�	¦#/×!Ø�Ù,#�� . Thus, all the operators used can be evaluated in time Ö�	¦#/×!Ø�Ù,#�� , where
# is the size of the input. The ÚCÛ�f�Ü operation can be performed in ÖÈ	S�X� time. The inner loop
of the algorithm is evaluated at most once for each link between categories, i.e., at most 9 wcÝ �
times, where 9 is the number af categories (if all categories are directly linked to all others).
Thus, the overall big- Ö complexity of the algorithm is Ö�	K9 w #/×²Ø�Ùx#�� , where 9 is the number of
categories and # is the size of the largest participating � m�Ì6Í m;Î relation. The worst-case com-
plexity will not apply very often; in most cases, the inner loop will only be evaluated at most 9
times.

(1) procedure MakeCovering( U )
(2) for each ¼?<½etf�a�h�	RUE� do
(3) begin
(4) for each Ï¢<�etf�a�h�	RUE� where ]£^p`ba�	RÏC�©Þ¤]£^p`baA	¦¼}� do
(5) begin
(6) Ó�ß � m£Í Ò�àYáym£Í Ò 	R� m£Í Ñ�Õ2�+Ñ Í Ò �
(7) Ô�ß á+Ò 	RÓx�
(8) ¼\ß ¼«dz��ÚCÛ�f�Ü�	RâG�yã�â7<CÔÃ$
(9) �+Ñ Í Ò ß �+Ñ Í Ò dÃ��	�ÚzÛ�f�Ü�	Râ:�.�.âG�+ã�â<CÔÃ$
(10) � m_Í Ñ ß � m_Í Ñ�dÃ��	RäX�{ÚCÛ�f�Ü�	KâG���yã_	RäX�.âG�g<CÓ©$
(11) end
(12) MakeCovering( ¼ )
(13) end
(14) end

The algorithm inserts new values into the ¼ category to ensure that the mappings from ¼
to higher categories are summarizable, i.e., that pre-aggregated results for ¼ can be directly
combined into higher-level aggregate results. The new values in ¼ mean that the cost of ma-
terializing aggregate results for ¼ is higher for the transformed hierarchy than for the original.
However, if the hierarchy was not transformed to achieve summarizability, we would have to
materialize aggregates for å , and perhaps also for higher level categories. At most one new
value is inserted into ¼ for every value in å , meaning that the extra cost of materializing results
for ¼ is never greater than the cost of the (otherwise necessary) materialization of results for
å . This is a very unlikely worst-case scenario—in the most common cases, the extra cost for ¼
will be much lower than the the cost of materializing results for å , and the savings will be even
greater because materialization of results for higher-level categories may also be avoided.

The correctness argument for the algorithm has two aspects. First, the mappings in the
hierarchy should be covering upon termination. Second, the algorithm should only make trans-
formations that are semantically correct, i.e., we should get the same results when computing
results with the new hierarchy as with the old. The correctness follows from Theorem 1 and 2,
below. As new values are inserted in the ¼ category, we will get aggregate values for both
the new and the original values when “grouping” by ¼ . Results for the original values will
be the same as before, so the original result set is a subset of the result set obtained with the
transformed hierarchy.
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Theorem 1 Algorithm MakeCovering terminates and the hierarchy for the resulting dimension
W�æ is covering.

Proof: By induction in the height of the dimension lattice. Base: The height is � , making the
statement trivially true. Induction Step: We assume the statement is true for dimension lattices
of height # , and consider lattices of height #èç>� . For termination, we note that there is a finite
number of 	R¼��pÏ�� pairs, all operations in the inner loop terminate, and the algorithm is called
recursively on ¼ , which is the root of a lattice of height # . For the covering property, we note
that the insertion of intermediate, marked values into ¼ means that the mapping from ¼ to Ï is
covering w.r.t. U . By the induction hypothesis, the mappings higher in the hierarchy are fixed
by the recursive call of the algorithm.

Theorem 2 Given dimensions W and WÉæ such that WËæ is the result of running MakeCovering
on W , an aggregate result obtained using W is a subset of the result obtained using WÈæ .
Proof: Follows easily from Lemma 1, next, as the inserted values are “internal” in the hierarchy.

Lemma 1 For the dimension WËæ¨�[	¦U1æ²� )»æ"� resulting from applying algorithm MakeCovering
to dimension WÊ�3	RU1� )+� , the following holds: ��V�vc�pV w}<éWê	RV�v1)»æ�V w+ë V�v/)¥V wc� (there is a
path between any two original dimension values in the new dimension hierarchy iff there was a
path between them in the original hierarchy).

Proof: By induction in the height of the dimension lattice. Base: The height is � making the
statement trivially true. Induction Step: We assume the statement is true for dimension lattices
of height # , and consider lattices of height #zç?� . Examing the inner loop, we see that the
insertion of intermediate values into ¼ , and the linking of values in U and Ï to these, only
links values in U and Ï that were linked before. No links or values are destroyed by the inner
loop. Thus, the statement is true for the links from U to ¼ , and from U to Ï . By the induction
hypothesis, the statement holds true for the transformations made by the recursive call on ¼ .

We see that the original values in the hierarchy are still linked to exactly the same original
values as before, as stated by Lemma 1, although new values might have been inserted in-
between the original values. Thus, when evaluating a query using the transformed hierarchy,
the results for the original values will be the same as when using the original hierarchy.

Assuming only the original result set is desired, results for the new values must be excluded,
which is easy to accomplish. The new, “internal” values are marked with “mark=internal”,
whereas the original values have “mark=original”. In order to exclude the new, internal values
from the result set, the equivalent of an SQL HAVING clause condition of “mark=original” is
introduced into the original query.

4.2 Non-Onto Hierarchies

The second algorithm renders all mappings in hierarchies onto, i.e., all dimension values in
non-bottom categories have children. This is ensured by inserting placeholder values in lower
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categories to represent the childless values. These new values are marked with the original
values, making it possible to map facts to the new placeholder values instead of to the original
values. This makes it possible to only map facts to the bottom category.

Example 7 In the Diagnosis dimension, the “Lung cancer” diagnosis family (ID = 14) has no
children. When the algorithm reaches the Diagnosis Family category, it inserts a placeholder
value (L14) into the Low-level Diagnosis category, representing the “Lung cancer” diagnosis,
and links it to the original value. Facts mapped to the “Lung cancer” value may then instead
be mapped to the new placeholder value, ensuring that facts are mapped only to the Low-level
Diagnosis Category. A graphical illustration of the transformation is seen in Figure 4. The
bold-faced L14 value is the new value inserted, and the thick line between 14 and L14 is the
new link inserted.
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Figure 4: Transformations by the MakeOnto Algorithm

In the algorithm below, ¼ is a parent category, U is a child category, and Ô holds the
parent values with no children. The algorithm works as follows. Given a category ¼ (initially
the - category) in line (1), the algorithm goes through all categories U that are (immediate)
descendants of ¼ (2). For each U , line (4) finds the values Ô in ¼ that have no children in U ,
by “subtracting” the values with children in U from the values in ¼ . For each “childless” value
in Ô , lines (5) and (6), respectively, insert into U a placeholder value marked with the parent
value, and links the new value to the original. MakeOnto is then called recursively on U (7).
The algorithms terminates when it reaches the 0 category, which has no descendants.

Following the reasoning in Section 4.1, we find that the overall big- Ö complexity is equal to
ÖÈ	R9 w #/×²Ø�Ùx#�� , where 9 is the number of categories and # is the size of the largest participating
� m�Ì6Í m;Î relation. However, the complexity will only be ÖÈ	R9�#/×²Ø�Ù(#�� for the most common cases.

The MakeOnto algorithm inserts new values into U to ensure that the mapping from U to ¼
is summarizable. Again, this means that the cost of materializing results for U will be higher for
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the transformed hierarchy than for the original. However, if the new values were not inserted,
we would have to materialize results for ¼ , and perhaps also higher categories, as well as U .
At most one value is inserted in U for every value in ¼ , meaning that the extra cost for U is
never greater than the cost of materializing results for ¼ . As before, this is a very unrealistic
scenario, as it corresponds to the case where no values in ¼ have children in U . In most cases,
the extra cost for U will be a small percentage of the cost of materializing results for ¼ , and the
potential savings will be even greater, because pre-aggregation for higher-level categories may
be avoided.

(1) procedure MakeOnto( ¼ )
(2) for each U?<�nQaporq�	R¼E� do
(3) begin
(4) Ô�ß ¼ à»á Ñ,	R� m£Í Ñ��
(5) Usß U«dÃ��ÚCÛ�f�Ü�	�ì:�+ãpì<CÔÃ$
(6) � m_Í Ñß � m£Í Ñ�dC��	6ÚCÛ�fpÜ�	�ì:�c�KìG�yãpì <CÔz$
(7) MakeOnto( U )
(8) end
(9) end

As before, the correctness argument for the algorithm has two aspects. First, the mappings
in the hierarchy should be onto upon termination. Second, the algorithm should only make
transformations that are semantically correct. The correctness follows from Theorems 3 and 4,
below. Again, the result set for the original values obtained using the original hierarchy will
be a subset of the result set obtained using the transformed hierarchy. The results for the new
values can be excluded from the result set by adding a HAVING clause condition.

Theorem 3 Algorithm MakeOnto terminates and the hierarchy for the resulting dimension W7æ
is onto.

Proof: By induction in the height of the dimension lattice. Base: The height is � , making the
statement trivially true. Induction Step: We assume the statement is true for dimension lattices
of height # , then consider lattices of height #QçP� . For termination, we note that there is a finite
number of descendants U for each ¼ , that all operations in the loop terminate, and that the
algorithm is called recursively on U , which is the top element in a lattice of height # . For the
onto property, we note that the insertion of placeholder values into U makes the mapping from
U to ¼ onto. By the induction hypothesis, the mappings further down in the lattice are handled
by the recursive call.

Theorem 4 Given dimensions W and WÉæ such that WËæ is the result of applying the MakeOnto
algorithm to W , an aggregate result obtained using W is a subset of the result obtained using W7æ .
Proof: Follows easily from the observation that “childless” dimension values are linked to
new, placeholder values in lower categories in one-to-one relationships, meaning that data for
childless values will still be counted exactly once in aggregate computations that use the new
dimension.
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4.3 Non-Strict Hierarchies

The third algorithm renders mappings in hierarchies strict, meaning that problems of “double-
counting” will not occur. Non-strict hierarchies occur when one dimension value has several
parent values.

The basic idea is to “fuse” a set of parent values into one “fused” value, then link the child
value to this new value instead. The fused values are inserted into a new category in-between
the child and parent categories. Data for the new fused category may safely be re-used for
computation of higher-level aggregate results, as the hierarchy leading up to the new category
is strict.

The fused value is also linked to the relevant parent values. This mapping is by nature non-
strict, but this non-strictness is not a problem, as we prevent aggregate results for the parent
category from being re-used higher up in the hierarchy. This is done by “unlinking” the parent
category from its predecessor categories.

The categories higher up are instead reached through the fused category. This means that we
can still get results for any original category, while being able to apply practical pre-aggregation
throughout the hierarchy. In pre-aggregation terms, the “unlinking” of the parent categories
means that we must prevent results for including this category from being materialized—only
“safe” categories may be materialized. This should be given as a constraint to the pre-aggrega-
tion system that chooses which levels of aggregation to materialize.

We note that the algorithm does not introduce more levels in the hierarchy, only more cat-
egories, and that the number of “safe” categories in the result is the same as the number of
original categories. This means that the complexity of the task of selecting the optimal aggre-
gation levels to materialize is unaffected by the algorithm.

12 11

4 9 10

5 6 5 6

4,9 4,10

4 9 10

11,12

⊥ ⊥

12 11

⊥ ⊥

Diagnosis
Group

Diagnosis
Group

Diagnosis
Family

Diagnosis
Family

Low-level
Diagnosis

Low-level
Diagnosis

Set-of
Diagnosis

Family

Set-of
Diagnosis

Group

13

14

L14 L14

14

14

13

13

Figure 5: Schema and Value Transformations by the MakeStrict Algorithm.

Example 8 The result of running the algorithm on the Diagnosis dimension is seen in Figure 5.
Because of the non-strictness in the mapping from Low-level Diagnosis to Diagnosis Family,
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and from Diagnosis Family to Diagnosis Group, two new category types and the corresponding
categories are introduced. The third picture indicates the argument to the algorithm; and, in
addition, its dotted lines indicate the links deleted by the algorithm. The fourth picture gives the
result of applying the algorithm; here, the bold-face values and thick lines indicate the values
and links inserted by the algorithm.

In the first call of the algorithm the three Low-level Diagnosis values—“(low-level) Lung
cancer” (L14); “Insulin dependent diabetes during pregnancy” (5); and “Non insulin dependent
diabetes during pregnancy” (6)—are linked to the three new fused values—“(low-level) Lung
cancer” (14); “Diabetes during pregnancy, Insulin dependent diabetes” (4, 9); and “Diabetes
during pregnancy, Non insulin dependent diabetes” (4, 10)—and these are in turn linked to
“Lung Cancer” (14); “Diabetes during pregnancy” (4); “Insulin dependent diabetes” (9); and
“Non insulin dependent diabetes” (10). The these latter four values in the Diagnosis Family
category are un-linked from their parents, as the Diagnosis Family category is “unsafe.”

When called recursively on the Set-of Diagnosis Family category, the algorithm creates the
new fused values “Cancer” (13) and “Diabetes, Other pregnancy related diseases” (11, 12) in
the Set-of Diagnosis Group category. These new values are linked to the values “Cancer” (13),
“Diabetes” (11), and “Other pregnancy related diseases” (12) in the Diagnosis Group category,
and to the - value; and the values in the Diagnosis Group category are un-linked from their
parents. Note the importance of having a - value: the values not linked to - are exactly the
unsafe values, for which aggregate results should not be re-used.

The algorithm assumes that all paths in the dimension hierarchy have equal length, i.e., all
direct links are from children to their immediate parents. This is ensured by the MakeCovering
and MakeOnto algorithms. In the algorithm below, U is a child category, ¼ is a parent category,
å is a grandparent category, Ô is the new category introduced to hold the “fused” values, and
Õ denotes natural join.

The algorithm takes a category U (initially the 0 category) as input. I then goes through the
set of immediate parent categories ¼ of U (line (2)). Line (4) tests if there is non-strictness in
the mapping from U to ¼ and if ¼ has any parents (4). If this test fails, there is no problem as
aggregate results for ¼ can either be safely re-used or are guaranteed not be re-used; and the
algorithm in then invoked recursively, in line (20).

If the test succeeds, the algorithm creates a new fused category. First, a new, empty category
Ô with domain � Ñ is created in line (6). The values inserted into this category represent sets of
values of ¼ . For example. the value “1, 2” represents the set consisting of precisely ���.� . Values
in U are then linked to to new, fused values, representing their particular combination of parents
in ¼ (7). The new values are constructed using a Fuse function, that creates a distinct value for
each combination of ¼ values and stores the corresponding ¼ values along with it.

The resulting links are used in line (8) to insert the fused values into their category Ô , and
an “Unfuse” function, mapping fused values from Ô into the corresponding ¼ values, is used in
line (9) to map the values in Ô to those in ¼ . In line (10), Ô is included in, and ¼ is excluded
from, the sets of predecessors of U . The set of predecessors of Ô is set to ¼ in line (11),
meaning that the new category Ô resides in-between U and ¼ in the hierarchy.

For each grandparent category å , the algorithm links values in Ô to values in å , in line
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(14), includes å in the predecessors of Ô , in line (15), and excludes å from the predecessors of
¼ , in line (16), thereby also deleting the links from ¼ to å from the hierarchy. The exclusion
of the å categories from the predecessors of ¼ means that aggregate results for ¼ will not be
re-used to compute results for the å categories.

In the end, the algorithm is called recursively on the new category, Ô . Note that the test for
egf�a�h�	¦¼}�èí�¤î in line (4) ensures that the mapping from Ô to ¼ will not be altered, as ¼ now
has no predecessors.

(1) procedure MakeStrict ( U )
(2) for each ¼?<½etf�a�h�	RUE� do
(3) begin
(4) if 	 � V�v©<CU\	 � V wr�pV Áy<�¼\	RV�vg)ÂV wÅ�V�v©)ÂV ÁZ�V w}í�>V Ác�������Cetf�a�h�	R¼E�Bí�>î then
(5) begin
(6) Ô�ß ïÅf�a�Û�ðSa�ï,Û�ð6aKñ�ò�f.^:	K� Ñ �
(7) � m_Í ó ß ��	¦V�vc�{ô�õ;ora�	S��V w1ã�	RV�vc�pV wp��<�� m_Í ÑZ$����p$
(8) Ô�ß á+ó 	R� m_Í ó �
(9) � ó%Í Ñß ��	¦V�v.�pV wc�yã�V�v�<�Ô[�7V wy<sö�÷ ø.õ;oraA	¦V�v��.$
(10) etfpa�h�	¦U}�,ß etfpa�h�	¦U}��dz��ÔÃ$ à ��¼¬$
(11) etfpa�h�	¦Ô��,ß ��¼¬$
(12) for each å=<½etf�a�h�	R¼E� do
(13) begin
(14) � ó%Í ù ß á+ó%Í ù 	¦� ó%Í Ñ�Õ2�+Ñ Í ù �
(15) etf�a�h�	RÔ �xß etf�a�h�	RÔ���dC��å�$
(16) etf�a�h�	R¼E�(ß etf�a�h�	R¼E� à ��å�$
(17) end
(18) MakeStrict( Ô )
(19) end
(20) else MakeStrict( ¼ )
(21) end
(22) end

Following the reasoning in Section 4.1, we find that the overall big- Ö complexity is equal
to ÖÈ	�ìb#�9©×²Ø�Ùx#/×!Ø�Ùx9£� , where ì is the number of immediate parent and children categories in
the dimension type lattice, # is the size of the largest mapping in the hierarchy, and 9 is the
maximum number of values fused together. For most realistic scenarios, ì and 9 are small
constants, yielding a low Ö�	¦#/×!Ø�Ù(#�� complexity for the algorithm.

The MakeStrict algorithm constructs a new category Ô and insert fused values in Ô to
achieve summarizability for the mapping from Ô to ¼ , and from Ô to å . The algorithm only
inserts the fused values for the combinations that are actually present in the mapping from U
to ¼ . This means that the cost of materializing results for Ô is never higher than the cost of
materializing results for U . This is a worst-case scenario, for the most common cases the cost of
materializing results for Ô will be be close to the cost of materializing results for ¼ . However,
without the introduction of Ô , we would have to materialize results not only for ¼ , but also for
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å and all higher-level categories. Thus, the potential savings in materialization costs are very
high indeed.

Considering correctness, the mappings in the hierarchy should be strict upon termination,
and the algorithm should only make transformations that are semantically correct. More specif-
ically, it is acceptable that some mappings be non-strict, namely the ones from the new, fused
categories to the unsafe parent categories. This is so because unsafe categories do not have
predecessors in the resulting hierarchy, meaning that aggregate results for these categories will
not be re-used.

The correctness follows from Theorems 5 and 6, below. When evaluating queries we get
the same result for original values as when evaluating on the old hierarchy. The values that
are deleted by the algorithm were not linked to any facts, meaning that these values did not
contribute to the results in the original hierarchy. As all the new values are inserted into new
categories that are unknown to the user, the aggregate result obtained will be the same for the
original and transformed hierarchy. Thus, we do not need to modify the original query.

Theorem 5 Let W æ be the dimension resulting from applying algorithm MakeStrict on dimen-
sion W . Then the following hold: Algorithm MakeStrict terminates and the hierarchy for the
dimension W æ æ , obtained by removing unsafe categories from W æ , is strict.

Proof: By induction in the height of the dimension lattice. Base: The height is � , making the
statement trivially true. Induction Step: Assuming that the statement is true for lattices of height
# , lattices of height #�ç�� are considered. All steps in the algorithm terminate, and the algorithm
is called recursively on either ¼ (in the strict case) or Ô (in the non-strict case), both of which
are the root of a lattice of height # , thus guaranteeing termination.

For the strictness property, there are three cases. If the mapping from U to ¼ is already
strict, this mapping is not changed, and by the induction hypothesis, the statement holds for the
recursive call on ¼ . If the mapping from U to ¼ is non-strict, but ¼ does not have any parents,
strictness is ensured, as ¼ is excluded from WÉæ æ . If the mapping is non-strict and ¼ has parents,
the resulting mapping from U to Ô is strict. By the induction hypothesis, the statement holds
true for the recursive call on Ô , as the introduction of Ô has not increased the height of the
lattice.

Theorem 6 Given dimensions W and WÉæ such that WËæ is the result of applying the MakeStrict
algorithm to W , an aggregate obtained using WÉæ is the same as that obtained using W .

Proof: Follows from Lemma 2, as all facts are mapped to values in the 0 category, which is a
safe category. Thus, there will be a path from a fact � to an original dimension value V iff there
was one in the original hierarchy, meaning that aggregate results computed using the original
and the new hierarchy will be same.

Lemma 2 For the dimension W æ �Ê	¦U æ � ) æ � resulting from applying algorithm MakeStrict to
dimension Wú�8	¦Uu�§)B� , the following holds. ��V�vc�pV w}<�W8	RV�vB<�Uyv%��û¨Û�ø a;	RUyv��%�CV�v/) æ V wyë
V�vB)\V wc� (there is a path between an original dimension value in a safe category and any other
original dimension value in the new dimension hierarchy iff there was a path between them in
the original hierarchy).
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Proof: By induction in the height of the dimension lattice. Base: The height of the lattice is
� , making the statement trivially true. Induction Step: If either the mapping from U to ¼ is
strict, or ¼ does not have any parents, the algorithm does not change the mappings, and by the
indiction hypothesis, the statement is true for the recursive call on ¼ . Otherwise, we observe
that the creation of fused values in Ô , and the linking of U , ¼ , and å values to these, only links
exactly the values in U and ¼ , or U and å , that were linked before. Because ¼ is not safe, the
links from ¼ to å may be deleted. By the induction hypothesis, the statement is true for the
recursive call on Ô .

5 Fact-Dimension Transformation Techniques

This section explains how the set of algorithms from Section 4 may also be applied to the
relationships between facts and dimensions, thus providing a basis for enabling practical pre-
aggregation on concrete MOs that include fact data.

The basic idea is to view the set of facts � as the bottom granularity in the lattice. The input
to the algorithms then consists of the facts, � , the �/ü Í m tables, describing the mappings from
facts to dimension values, and the U and � m Ì Í m Î tables, describing the dimension categories and
the mappings between them.

Only the covering and strictness properties are considered because for the fact-dimension
relationships, a mapping between facts and dimension values that is into means that not all
dimension values in the bottom category have associated facts, which does not affect summa-
rizability. As before, we first apply the MakeCovering algorithm, then the MakeStrict algorithm.

The computational complexity of the algorithms will now be dominated by the size, # , of
the mapping between facts and dimension values, i.e., the complexity will be Ö�	¦#/×!Ø�Ù(#�� if we
assume the height of the lattice and the maximum number of values fused together to be small
constants. This means that the algorithms can be applied to even very large databases.

5.1 Mixed Granularity Mappings

The first case to consider is the one where some of the mappings are non-covering w.r.t. the
facts, meaning that not all facts can be reached through these mappings and thus resulting in
these facts not being accounted for in aggregate computations. This occurs when some facts are
mapped directly to dimension values in categories higher than the 0 category, i.e., the facts are
mapped to values of mixed granularities.

We use the MakeCovering algorithm to make the mappings covering, initially calling it on
� , which is now the bottom of the lattice. The algorithm makes the mappings covering w.r.t.
the facts by inserting new marked values, representing the parent values, in the intermediate
categories, and by linking the facts to the new values instead of the parent values. As in Sec-
tion 4.1, the marked values keep information about their original values, so that when new
fact-dimension mappings are added, the links that are supposed to go directly to the original
parent values now instead can be set to go to the marked value in the 0 category.
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Example 9 In the case study, the mapping between Patients and Diagnoses is of mixed gran-
ularity: “John Doe” (1) and “Jane Doe” are both mapped to the Diagnosis Family, “Insulin
dependent diabetes” (9), “Jane Doe” is additionally mapped to the Low-level Diagnosis, “In-
sulin dependent diabetes during pregnancy” (5), and “Jim Doe” is mapped to “Diabetes” (11),
a Diagnosis Group.

In the first call of the algorithm, two new Low-level Diagnoses are inserted: “L9,” represent-
ing “Insulin dependent diabetes,” and “L11,” representing “Diabetes”; and the facts are mapped
to these instead of the original values. In the recursive call on Low-level Diagnosis, an “F11”
value representing “Diabetes” at the Diagnosis Family level is inserted between “Diabetes” and
value “L11.”

The transformations are illustrated in Figure 6, where dotted lines indicate links that are
deleted by the algorithm and bold-face value and thick lines indicate dimension values and
links inserted by the algorithm.
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1 2 3
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Figure 6: Transformations for Varying Granularities.

5.2 Many-To-Many Relationships

The second case occurs when relationships between facts and dimension values are many-to-
many. This means that the hierarchy, with the facts as the bottom category, is non-strict, leading
to possible double-counting of facts. It is enough to make the hierarchy partly strict, as described
in Section 4.3. The MakeStrict algorithm is initially called on � , which is now the bottom of
the hierarchy lattice. Because the MakeCovering algorithm has already been applied, all paths
from facts to the - value have equal length, as required by the MakeStrict algorithm.
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Some dimension values have no facts mapped to them, leading to an interesting side effect
of the algorithm. When the algorithm fuses values and places the fused values in-between the
original values, it also deletes the child-to-parent and parent-to-grandparent links. The fact-less
dimension values are then left disconnected from the rest of the hierarchy, with no links to other
values.

These fact-less dimension values do not contribute to any aggregate computations and are
thus superfluous. To minimize the dimensions, an “Delete-unconnected” algorithm that deletes
the fact-less dimension values by traversing the hierarchy starting at the facts is invoked in a
postprocessing step. For a hierarchy of height 9 , this can be done in time Ö�	K9�#/×!Ø�Ù,#�� , where
# is the size of the mapping between facts and dimensions. Thus, the overall computational
complexity is not altered.
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Figure 7: Transformations for Many-to-many Fact-Dimension Relationships

Example 10 The relationship between patients and diagnoses is many-to-many. In Example 9,
the MO was transformed so that all mappings were covering, as seen in Figure 6; algorithm
MakeStrict is applied to this MO. The final result of the application of the algorithm is seen to
the right in Figure 7. Values in italics, e.g., L14, and dotted lines indicate deleted values and
links. Bold-face values and thick lines denote values and links inserted by the algorithm.

Three new categories are introduced: “Set-of Low-level Diagnosis,” “Set-of Diagnosis Fam-
ily,” and “Set-of Diagnosis Group,” as non-strictness occurs at all levels. Fused values are
inserted into these fused categories. For example, values “(low-level) Lung Cancer” (L14), “In-
sulin dependent diabetes during pregnancy, (low-level) Insulin dependent diabetes” (5, L9), and
“(low-level) Insulin dependent diabetes” (L9) are inserted into the “Set-of Low-level Diagno-
sis” category; and the original values are linked to the new values.

Values “(low-level) Lung cancer” (L14), “Lung cancer” (14), “Cancer” (13), “Non insulin
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dependent diabetes during pregnancy” (6), and “Non insulin dependent diabetes” (10) do not
characterize any facts and are deleted by “Delete-unconnected.”

6 Architectural Context

The overall idea presented in this paper is to take un-normalized MOs and transform them into
normalized MOs that are well supported by the practical pre-aggregation techniques available
in current OLAP systems. Queries are then evaluated on the transformed MOs. However, we
still want the users to see only the original MOs, as they reflect the users’ understanding of the
domain. This prompts the need for means of handling both the original and the transformed
MOs. This section explores this coexistence.

A current trend in commercial OLAP technology is the separation of the front-end presen-
tation layer from the back-end database server. Modern OLAP applications consist of an OLAP
client that handles the user interface and an OLAP server that manages the data and processes
queries. The client communicates with the server using a standardized application programming
interface (API), e.g., Microsoft’s OLE DB for OLAP [17] or the OLAP Council’s MDAPI [20].
The architecture of such a system is given to the left in Figure 8.
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Figure 8: Architecture of Integration

This separation of client and server facilitates our desire to have the user see the original
MO while queries are evaluated against the transformed MO. Studies have shown that queries
on a data warehouse consist of 80% navigational queries that explore the dimension hierarchies
and 20% aggregation queries that summarize the data at various levels of detail [14]. Examples
of navigational and aggregation queries are “Show me the Low-Level Diagnoses contained
in the Insulin-Dependent Diabetes Diagnosis Family” and “Show me the count of patients,
grouped by Diagnosis Family,” respectively. The navigational queries must be performed on
the original MO, while the aggregation queries must be performed on the transformed MO.
This is achieved by introducing an extra “Query Handler” component between the client and
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the server. The OLAP client sends a query to the query handler, the primary task of which is to
determine whether the query is a navigational query (internal to a dimension) or an aggregation
query (involving the facts). Navigational queries are passed to one OLAP server that handles
the original (navigational) data, while aggregation queries are passed to another OLAP server
that manages the transformed (aggregation) data. This extended system architecture is seen to
the right in Figure 8.

The OLAP server for navigation data needs to support dimension hierarchies which have
non-summarizable properties, a requirement not yet supported by many commercial systems
today. However, relational OLAP systems using snow-flake schemas [14] are able to support
this type of hierarchies, as are some other OLAP systems, e.g., Hyperion (Arbor) Essbase [12].
If the OLAP system available does not have sufficiently flexible hierarchy support, one solution
is to build a special-purpose OLAP server that conforms to the given API. This task is not
as daunting as it may seem at first because only navigational queries need to be supported,
meaning that multidimensional queries can be translated into simple SQL “lookup” queries.

We note that the only data needed to answer navigational queries is the hierarchy definitions.
Thus, we only need to store the fact data (facts and fact-dimension relations, in our model) once,
in the aggregational data, meaning that the overall storage requirement is only slightly larger
than storing just the aggregational data. Navigational queries are evaluated on the original
hierarchy definitions and do not need to be re-written by the query handler.

As described in Section 4, aggregation queries need to be re-written slightly by adding an
extra HAVING clause condition to exclude results for the new values inserted by the trans-
formation algorithms. This can easily be done automatically by the query handler, giving total
transparency for the user. Even though the added HAVING clause conditions are only necessary
for the covering and onto transformations, they can also be applied to hierarchies transformed
to achieve strictness; this has no effect, but simplifies the query rewriting.

7 Conclusion and Future Work

Motivated by the increasing use of OLAP systems in many different applications, including in
business and health care, this paper provides transformation techniques for multidimensional
databases that leverage the existing, performance-enhancing technique, known as practical, or
partial or semi-eager, preaggregation, by making this technique relevant to a much wider range
of real-world applications.

Current pre-aggregation techniques assume that the dimensional structures are summariz-
able. Specifically, the mappings in dimension hierarchies must be onto, covering, and strict;
the relationships between facts and dimensions must be many-to-one, and the facts must always
be mapped to the lowest categories in dimensions. The paper presents novel transformation
techniques that render dimensions with hierarchies that are non-onto, non-covering, and non-
strict summarizable. The transformations have practically low computational complexity, they
may be implemented using standard relational database technology, and the paper also describes
how to integrate the transformed hierarchies in current OLAP systems, transparently to the user.

The paper also describes how to apply the transformations to the cases of non-summarizable
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relationships between facts and dimensions, which also occur often in real-world applications.
Finally, it is shown how to modify the algorithms to incrementally maintain the transformed
hierarchies when the underlying data is modified.

Several directions for future research appear promising. The current techniques render the
entire dimension hierarchies summarizable; extending the techniques to consider only the parts
that have been selected for preaggregation appears attractive and possible. Another direction
is to take into account the different types of aggregate functions to be applied, leading to local
relaxation of the summarizability requirement. For example, max and min are insensitive to
duplicate values, thus relaxing summarizability.
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A Incremental Computation

When dimension hierarchies or fact data are updated, the transformed hierarchies must be
updated correspondingly. One solution is to recompute the hierarchies using the new data.
This straightforward solution is attractive when updating small dimension hierarchies that only
change infrequently, or when large bulks of updates are processed. However, for massive hier-
archies and frequent updates, and for updates of small parts of the hierarchies in general, it is
desirable if the algorithms need only consider the changed parts of data, which will only be a
small fraction of the total data volume. This section briefly describes how to incrementalize the
algorithms.

In addition to modifying the transformed hierarchies, it is also necessary to update the ac-
tual pre-aggregated data when the underlying base data is modified. The modified hierarchies
resulting from the algorithms given in this section differ only locally from the argument hierar-
chies. This means that the cost of updating the pre-aggregated data will not be greatly affected
by the hierarchy transformations.

In the incremental algorithms, updates are modeled as deletions followed by insertions, so
we consider only the latter two modification operations. We use prefix ý�� to denote inserted
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values, ý�þ to denote deleted values, and ý to denote all modifications. For example, ý��¡U
denotes the values inserted into U . The category and links tables in the algorithms refer to the
states after modifications; and when a hierarchy value is deleted, all links to that value are also
assumed to be deleted in the same set of modifications.

Insert Delete
U yes no
¼ no yes
Ï no yes

� m_Í Ò yes no
� m_Í Ñ no yes
�+Ñ Í Ò no yes

Covering

Insert Delete
U no yes
¼ yes no

� m_Í Ñ no yes
Onto

Insert Delete
U no yes
¼ no yes
å no yes

� m_Í Ñ yes yes
�+Ñ Í ù yes yes

Strict

Table 2: Effects of Insertions and Deletions on the Covering, Onto, and Strictness Properties

A.1 Covering Hierarchies

Modifications may render covering hierarchies non-covering in several ways. The the left-most
table in Table 2, named “Covering” and discussed next, indicates whether an insertion (“Insert”)
or a deletion (“Delete”) on the different parts of the input to MakeCovering may render the
modified hierarchy non-covering.

Problems may arise if links are inserted into � m_Í Ò that are not covered by insertions into
� m_Í Ñ and �+Ñ Í Ò , or if links are deleted in � m_Í Ñ or �+Ñ Í Ò , but the corresponding U -to- Ï links are
not deleted in � m_Í Ò . If values are deleted in ¼ or Ï , their links will be deleted too, which is
handled by the case above. Values cannot be inserted into U without any links, as all values in
the original hierarchy must at least be linked to the - value.

The incremental version of MakeCovering algorithm starts by finding (in line (6)) the links
Ó from U to Ï that are not covered by the links from U to ¼ and ¼ to Ï . These links are
used as the base for the rest of the transformation. Thus, line (6) of the algorithm becomes the
following expression.

Ó�ß�ýQ��� m_Í Ò d áym_Í Ò 	¦ý�þc� m_Í Ñ�Õé�+Ñ Í Ò ��d á+m_Í Ò 	R� m_Í Ñ�Õ2ý¬þ.�+Ñ Í Ò �
à�á+m_Í Ò 	RýQ��� m_Í Ñ�Õ2ýQ�¡�+Ñ Í Ò � à ý¬þc� m_Í Ò

A.2 Onto Hierarchies

The effects on the onto property of insertions and deletions are outlined in the middle table in
Table 2. Insertion of values into ¼ , deletion of values in U , and deletion of links in � m_Í Ñ may
cause the hierarchy to become non-onto. The incremental version of the MakeOnto algorithm
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thus starts by finding (in line (4)) the “childless” values Ô from ¼ with no children in U . As a
result, line (4) of the algorithm becomes the following expression.

Ô�ß ýQ��¼Pd á Ñ,	¦ýè~Z� m_Í Ñ�� àYá Ñ(	¦ý�þc¼E� àYá Ñ(	¦ý¬�¡� m_Í Ñ��

A.3 Strict Hierarchies

The case of maintaining the strictness property of hierarchies is more complicated because a
new category Ô is introduced by the algorithm. We assume that all new categories have already
been created before the incremental algorithm is used, i.e., if non-strictness is introduced in
new parts of the hierarchy, we have to recompute the transformed hierarchy. The introduction
of non-strictness requires major restructuring of both the hierarchy and the pre-aggregated data,
so this is reasonable.

An overview of the effect on strictness of insertions and deletions in the input to algorithm
MakeStrict is given in the right-most table in Table 2. If links are inserted into, or deleted from,
� m_Í Ñ or �+Ñ Í ù , the links to Ô for the affected U , ¼ , and å values must be recomputed.

Insertions into, or deletion from, U , ¼ , or å will be accompanied by corresponding link
insertions and deletions, so they are handled by the above case. The incremental MakeStrict,
given below, works by finding the affected U , ¼ , and å values, then recomputes their links to
Ô and deletes the old links, and finally inserting the new links. As before, it is followed by a
step that deletes the disconnected parts of the hierarchy.

(1) procedure IncrementalMakeStrict( U )
(2) for each ¼?<½etf�a�h�	RUE� such that etf�a�h�	R¼E�Bí�>î do
(3) begin
(4) ¿AU\ß á+m 	¦ýè� m£Í Ñ��
(5) ¿A� m_Í ó ß ��	RäX�{ô�õ;ora�	S�pìzã_	RäX�Kì:�g<C¿AU�Õ2� m£Í Ñ�$��.$
(6) ¿AÔ�ß á+ó 	¦¿�� m£Í ó �
(7) Ô�ß Ôÿd ¿AÔ
(8) � m_Í ó ß � m_Í ózà ��	¦ä���#��yã�äB<C¿AU¬$�d7¿�� m£Í ó
(9) ¿A¼\ß á Ñ,	¦ý�� m_Í Ñ��
(10) ¿A� ó%Í Ñß ��	¦#Z�Rì:�yãX#z<C¿AÔÿ�èì <�¿�¼��@ö�÷_ô�õ;ora�	¦#��p$
(11) � ó�Í Ñ�ß � ó%Í Ñ à ��	¦#Z�Rì:�yãpì <�¿�¼¬$gd ¿A� ó%Í Ñ
(12) for each å=<½etfpa�h�	¦¼}� do
(13) begin
(14) ¿Aå\ß áyù 	Rý��+Ñ Í ù d½	R¿A¼�Õé�yÑ Í ù ���
(15) � ó%Í ù ß � ó�Í ù ��	¦#�� ¹ �Yã ¹ <C¿Aå¬$©d á+ó%Í ù 	¦� ó%Í Ñ�Õ2�+Ñ Í ù Õ2¿�åE�
(16) end
(17) IncrementalMakeStrict( Ô )
(18) end
(19) end
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